

AI 4 Science – BioML

- fzl@caltech.edu
- 🕗 +1 510-708-9551
- in francescazhoufanli
- francescazfl
- www.francescazfl.com
- 🔘 US Citizen, Shanghainese American
- Goal -

Advance and implement impactful, accessible ML tools with a focus on protein engineering, leveraging a computational skill set grounded in wet-lab science and engineering, along with an interdisciplinary, adaptable, and collaborative mindset

Skills & Tools -

Python LaTeX Bash Git HPC
PyTorch PyG scikit-learn SciPy
Pandas NumPy Biopython pLM
AF3 RDKit Open Babel Docking
SAMtools BLAST Machine Learning
Data Analysis Interactive Visuals
Protein Engineering Bioengineering
Problem Solving Communication
Collaboration Growth Leadership
Organization Mentoring Outreach
Self-Direction Perseverance

Selected Talks & Posters -----

- ICML, 2024
- ML Protein Engineering Seminar, 2024
- SynBioBeta, 2023
- Caltech Bioscience Futures Day, 2023
- Seagate-Minnesota AI/ML Virtual Distinguished Speaker Series, 2023
- Google Research invited talk, 2022

Other Experiences -

- ICLR 2025 Volunteer Chair
- Co-organized the GEM Bio workshop at ICLR 2024 and 2025 with over 110 paper submissions and 300 attendees
- Code with Young Legends: Led an introductory coding workshop
- i-STEM: Mentored under-invested high school students on research projects
- Bioengineering Honor Society: Mentored high school bioengineering research competitions, with one team winning 2nd place
- Biotech Connection Los Angeles: To grow the local biotech landscape
- Biology Scholars Program:
 To challenge who can do STEM

Education

- 09/20-05/25 **Ph.D. in Bioengineering, GPA: 4.0** California Institute of Technology • NSF Graduate Research Fellowships Program • Amazon AI4Science Fellowship • Biotechnology Leadership Training Program
- 08/15-05/19 B.S. in Bioengineering, GPA: 3.96 University of California, Berkeley B.S. in Chemical Biology
 - Highest Honors Jack & Birthe Kirsch Prize Tau Beta Pi Scholarship
 - John Gorton Davis Scholarship T. Dale Stewart Scholarship

Industry & Academic Experience

06/22-09/22 BioML Research Intern Microsoft Research • Performed a systematic analysis of protein language model transfer learning via 370 experiments across downstream tasks, architectures, model sizes, model depths, and pretraining time (ICML 2024) 01/21-Present Machine Learning for Proteins Frances Arnold & Yisong Yue, Caltech • Evaluated 6 general, 10 substrate-aware, and ensemble zero-shot predictors across 22 substrates for non-native enzyme activities Systematically analyzed multiple ML-assisted directed evolution strategies, including active learning and focused training using six distinct zero-shot predictors, across 16 protein fitness landscapes • Contributed to the development of the interactive visualization web app for rapid sequence-function data generation and analysis Offered structural and data analysis insights to collaborators • Led grant writing, cross-group collaborations, and website updates • Mentored 2 master's students and 1 undergrad on their theses 09/20-01/21 Extremophile Genetic Component Discovery Richard Murray, Caltech • Constructed an RNA-seg analysis pipeline in R to discover novel genetic circuit components in non-canonical cell-free extracts 06/20-08/20 **RNA-Seq Sample Preparation Pipeline Optimization** Zymergen • Developed a Python package to design DNA oligos for RNaseH-based ribosomal RNA depletion for 8 strains in 7 programs • Wrote R scripts to quality control and preprocess RNA extraction data from industry-standard electrophoresis instruments • Delivered talks and collaborated within and outside the company 06/19-05/20 Antibody Engineering DevOpt Shohei Koide, NYU Langone Health • Developed MATLAB software for SARS-CoV-2 mutation analysis from the GISAID database, covering 25k global sequence entries Automated monobody and antibody Complementarity-Determining Region mutations identification and chromatogram visualization • Engineered, produced, and characterized antibody candidates for gastrointestinal cancer immunotherapy clinical trials 05/18-07/18 Cell-Free Platform Streamline Tierra Biosciences, QB3 Program • Optimized non-standard protein production in cell-free expression systems using Design Of Experiments methodology 01/16-05/19 Metabolic & Protein Engineering John Dueber, UC Berkeley · Automated time-course betaxanthin production analysis in MATLAB • Engineered yeast to increase benzylisoguinoline alkaloids yield • Improved beta-glucosidase stability & activity in a basic solution for indigo bio-production in E. coli via error-prone PCR libraries • Honor thesis: A "Microbial Factory" Toolkit: Yeast Spheroplast Transformation Method Development for CRISPR-Cas9 Multiplexing

Featured Publications

• Li F-Z, *et al*. Substrate-aware Zero-shot Predictors for Non-native Enzyme Activities. *GEM Bio Workshop at ICLR* (2025).

Long Y, Mora A, Li F-Z, *et al.* LevSeq: Rapid Generation of Sequence-Function Data for Directed Evolution and Machine Learning. *ACS Synth. Biol.* 14, 1, 230–238, (2025).
Li F-Z, *et al.* Evaluation of Machine Learning-Assisted Directed Evolution Across Diverse Combinatorial Landscapes. *bioRxiv* (2024).

Li F-Z, Amini AP, Yue Y, Yang KK, & Lu AX. Feature Reuse and Scaling: Understanding Transfer Learning with Protein Language Models. *PMLR.* 235, 27351-27375 (2024).
Yang J, Li F-Z, & Arnold FH. Opportunities and Challenges for Machine Learning-Assisted Enzyme Engineering. *ACS Cent. Sci.* 10, 226–241 (2024).

• Yang J, Ducharme J, Johnston KE, **Li F-Z**, *et al*. DeCOIL: Optimization of Degenerate Codon Libraries for Machine Learning-Assisted Protein Engineering. *ACS Synth. Biol.* **12**, 2444-2454 (2023).